

Proposal for an optimized TRD inner zone architecture layer and stack wise L. Radulescu, M. Petris, M. Petrovici, V. Simion "Horia Hulubei" National Institute of Physics and Nuclear Engineering,

CBM Collaboration Meeting, Dubna, 23-27 September 2013

Bucharest-Magurele, Romania

SIS300 – Current geometry of the CBM-TRD subsystem 3 station (TRD1, TRD2, TRD3), 10 layers

muon identification system

David Emschermann

The prototype and the arrangement of the modules on a layer

The prototype and the arrangement of the modules on a layer

SIS300 – Current geometry of the CBM-TRD subsystem

3 station (TRD1, TRD2, TRD3), 10 layers

Experimental setup with the electron identification system

SIS-300: RICH compact	RICH in, MUC		
Part	Z-start	Z-extent	Z-end
STS-Box			1200
Magnet			1600
Clearance	1600	200	1800
RICH	1800	2200	4000
Clearance	4000	100	4100
TRD 1 – 4 layers	4100	1800	5900
Clearance	5900	50	5950
TRD 2 – 4 layers	5950	1800	7750
Clearance	7750	50	7800
TRD 3 – 2 layers	7800	900	8700
Clearance	8700	100	8800
ToF	8800	1200	10000
Clearance	10000	300	10300
PSD	10300	1500	11800

The positions of the layers for SIS 300_RICH_compact

The shadows dimensions

The percentage of dead area relative to total area in section is 14.4%.

SIS300 – Current geometry of the CBM-TRD subsystem

3 station (TRD1, TRD2, TRD3), 10 layers

Experimental setup with the muon identification system

	RICH OUL, IV	IUCH IN	
Part	Z-start	Z-extent	Z-end
STS-Box			1200
Clearance	1200	50	1250
C Absorber 1	1250	600	1850
Detector station 1	1850	300	2150
Fe Absorber 2	2150	200	2350
Detector station 2	2350	300	2650
Fe Absorber 3	2650	200	2850
Detector station 3	2850	300	3150
Fe Absorber 4	3150	300	3450
Detector station 4	3450	300	3750
Fe Absorber 5	3750	350	4100
Detector station 5	4100	300	4400
Fe Absorber 6	4400	1000	5400
Clearance	5400	100	5500
TRD 1 – 4 layers	5500	1800	7300
Clearance	7300	50	7350
TRD 2 – 4 layers	7350	1800	9150
Clearance	9150	50	9200
TRD 3 – 2 layers	9200	900	10100
Clearance	10100	100	10200
ToF	10200	1200	11400
Clearance	11400	300	11700
PSD	11700	1500	13200

-9200-

The positions of the layers for SIS 300_MUCH

What happens when the TRD position is translated?

TRD 1 – 4 layers	4100	1800	5900
Clearance	5900	50	5950
TRD 2 – 4 layers	5950	1800	7750
Clearance	7750	50	7800
TRD 3 – 2 layers	7800	900	8700

TRD 1 – 4 layers	5500	1800	7300
Clearance	7300	50	7350
TRD 2 – 4 layers	7350	1800	9150
Clearance	9150	50	9200
TRD 3 – 2 layers	9200	900	10100

Optimized for SIS 300_MUCH (TRD position at 5500) and moved in SIS 300_RICH_compact (TRD position at 4100)

The percentage of dead area relative to total area in section is 21.5%.

Dead zone propagation

For SIS 300 RICH compact (TRD(1) = 4100 mm)the percentage of dead area relative to total area in section is 14.4%. For SIS 300_MUCH (TRD(1)=5500 mm) the percentage of dead area relative to total area in section is 13.5%.

The percentage of dead area is 21.5% when the optimized TRD version @ 5500 mm is translated to 4100 mm.

Conclusions

- A method for optimization of the geometric efficiency of the TRD inner zone, for a given distance to the target, was presented;
- Once the optimized geometry is translated to an other position relativ to the target, the dead zone increases;
- The maximum size of a chamber could be obtained by this method, but which is the maximum size which is affordable from the point of view of construction & counting rate performance is under investigation;
- The possibility of applying of this method to the outer part of the TRD layers should be discussed;

